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Abstract—Connected systems with switching between three linear discrete-time subsystems are
considered, and a new frequency-domain criterion for the existence of a quadratic Lyapunov
function ensuring the stability of such systems under arbitrary switching is proposed. The
application of this criterion is demonstrated on an example of a third-order system.

Keywords : discrete-time switched systems, stability, Lyapunov functions, matrix inequalities

DOI: 10.31857/S0005117924070014

1. INTRODUCTION

The theory of discrete-time systems has been actively developing lately. Various aspects of this
theory have been discussed in relatively recent publications [1–7]; also, see the bibliography therein.
This paper is devoted to the quadratic stability problem of connected discrete-time systems [3]
with switching between three linear stationary subsystems under any switching laws. The term
“connected system” will be explained below. By quadratic stability we mean the stability of
a system that can be established using a Lyapunov function from the class of quadratic forms
or quadratic Lyapunov functions (QLFs). For a connected system with switching between two
subsystems, this problem is equivalent to the absolute stability problem of a discrete-time system
with a single nonlinearity [3], and a quadratic stability criterion for such a system is the well-known
Tsypkin’s criterion [8]. In the case of switching between two subsystems, connectedness means that
the rank of the difference of the matrices determining the switched subsystems is one.

For connected discrete-time systems with switching between three linear subsystems, a frequency-
domain criterion for the existence of a QLF was established in [3]. The disadvantages are an
excessively cumbersome procedure for obtaining this criterion and an excessively cumbersome form
of the final result. They can be explained as follows. The quadratic stability of a switched system
ensues from the existence of a common quadratic Lyapunov function (CQLF). In the case under
consideration, the existence of a CQLF is determined by the feasibility of a system of three Lyapunov
linear matrix inequalities (LMIs) for discrete-time systems. This system of LMIs is connected,
and one resulting matrix inequality equivalent to it was derived in [3]. However, (a) this matrix
inequality is not an LMI and (b) the frequency-domain conditions of its feasibility cannot be
obtained based on the generalized Kalman–Szegö–Popov lemma [9, 10], as it was done in [3] in the
case of Tsypkin’s criterion. To overcome inconvenience (b), a fractional linear transformation was
used in [3] to pass from the system of LMIs for discrete-time systems to the equivalent system of
Lyapunov LMIs for continuous-time systems. The resulting matrix inequality for this system is
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again not an LMI, but its feasibility conditions were established in [3] in the form of a frequency-
domain criterion based on the frequency theorem [11, p. 54] (the Kalman–Yakubovich–Popov
(KYP) lemma). The conditions of this criterion are expressed through the elements of a “transfer
matrix” for the continuous-time system obtained by the transformation. Finally, using a rather
cumbersome procedure, these elements are expressed through the elements of the “transfer matrix”
of the original discrete-time system.

In this paper, we apply a new result (Theorem 2 of [12]) to the original system of three Lyapunov
LMIs for discrete-time systems to obtain an equivalent resulting matrix inequality that is an LMI.
Next, we demonstrate that the feasibility of this LMI can be established by the generalized Kalman–
Szegö–Popov lemma in the frequency-domain criterion form. This yields a new frequency-domain
criterion for the quadratic stability of the systems under consideration, the main aim of the paper.

Section 2 describes the system of three Lyapunov LMIs for discrete-time systems, whose feasi-
bility is equivalent to the quadratic stability of the systems under consideration. The main result
of this paper—the frequency-domain criterion for quadratic stability—is presented in Section 3.
A numerical example of a third-order system is provided in Section 4; for this system, the proposed
criterion is applied to analytically find the entire quadratic stability domain on the parameter.

2. PROBLEM STATEMENT

Consider a linear discrete-time switched system of the form

x(t+ 1) = A(t)x(t), A(t) ∈ A = {A1, A2, A3}, (1)

where As ∈ R
n×n and A(t) : Z+ −→ A is a mapping from the set Z+ of nonnegative integers into A.

By assumption, the matrices As are stable (Schur, see [13]), i.e., r(As) = max
ν

|μν(As)| < 1 for

s = 1, 3, where μν denote the eigenvalues of the matrix As. The stability of the switched system (1)
will be analyzed using QLFs of the form

v(x) = x�Lx, L = L� = ‖lij‖ni,j=1, (2)

where the symbol {·}� means transpose.

According to [3], the existence of a QLF (2) is determined by the feasibility of the system of
LMIs

Is = A�
s LAs − L < 0, s = 1, 3. (3)

System (1) is connected [3] if the matrices {A1, A2, A3} can be represented as

A1 = A,

A2 = A+ b1c
�
1 ,

A3 = A+ b2c
�
2 ,

bi, ci ∈ R
n.

(4)

In this case, system (3) can be written in the form

I1 = A�LA− L < 0,

I2 = (A+ b1c
�
1 )

�L(A+ b1c
�
1 )− L < 0,

I3 = (A+ b2c
�
2 )

�L(A+ b2c
�
2 )− L < 0.

(5)

The problem under consideration is to obtain a frequency-domain criterion for the feasibility of
the system of LMIs (5).
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3. SYSTEMS WITH SWITCHING BETWEEN THREE LINEAR
DISCRETE-TIME SUBSYSTEMS

To investigate the feasibility of system (5) we use Theorem 2 of [12]. In the formulas below, the
symbols “•” denote the elements below the principal diagonal of an appropriate symmetric matrix
that coincide with the corresponding elements above this diagonal.

Theorem 1. Let the inequalities in the system

I1 < 0, I2 = I1 +Q1 < 0, I3 = I1 +Q2 < 0 (6)

be LMIs with respect to the unknown variable ν, i.e., Is = Is(ν), s = 1, 3, and Qj(ν) =
pj(ν)q

�
j + qjp

�
j (ν), where pj = pj(ν) linearly depends on ν and qj is independent of ν, j = 1, 2.

Then system (6) is equivalent to the single matrix inequality

̂̃
I =

⎛⎜⎜⎜⎜⎜⎝
I1(ν) p1(ν) +

τ1
2
q1 p2(ν)− p1(ν) +

τ2
2
q2 − τ1

2
q1

(•)� −τ1 τ1 − τ2 + τ3
2

(•)� • −τ3

⎞⎟⎟⎟⎟⎟⎠ < 0, (7)

which is an LMI with respect to (ν, τ1, τ2, τ3).

With Theorem 1 applied to system (5), the feasibility of system (5) becomes equivalent to
the feasibility of the single matrix inequality with respect to the elements of the matrix L and
the three additional parameters τ1, τ2, τ3. The applicability of Theorem 1 to system (5) and the
resulting matrix inequality follow from the relations below. Let the matrix I1(ν) be the matrix
(A�LA− L) of system (5), i.e., I1(ν) = I1(L) = A�LA− L. (The role of the parameter ν is played
by the matrix L.) The difference of the matrices (I2−I1) from (5) can be represented as p1q

�
1 +q1p

�
1 :

I2 − I1 = A�
2 LA2 −A�

1 LA1 = (A+ b1c
�
1 )

�L(A+ b1c
�
1 )−A�LA

= (A�L+ c1b
�
1 L)(A+ b1c

�
1 )−A�LA

= A�Lb1c
�
1 + c1b

�
1 LA+ c1b

�
1 Lb1c

�
1 .

(8)

With the notations p01 = p01(L) = A�Lb1 and δ11 = δ11(L) = b�1 Lb1, we have

I2 − I1 = p01c
�
1 + c1(p

0
1)

� + δ11c1c
�
1 = p1q

�
1 + q1p

�
1 , (9)

where p1 = p1(L) = A�Lb1 +
(
δ11(L)

2

)
c1 and q1 = c1.

Similarly, let p02 = p02(L) = A�Lb2 and δ22 = δ22(L) = b�2 Lb2; then

I3 − I1 = p02c
�
2 + c2(p

0
2)

� + δ22c2c
�
2 = p2q

�
2 + q2p

�
2 , (10)

where p2 = p2(L) = A�Lb2 +
(
δ22(L)

2

)
c2 and q2 = c2.

Thus, by Theorem 1, system (5) is equivalent to the single matrix inequality

̂̃
I =

⎛⎜⎜⎜⎜⎜⎝
A�LA− L p1(L) +

τ1
2
c1 p2(L)− p1(L) +

τ2
2
c2 − τ1

2
c1

(•)� −τ1 τ1 − τ2 + τ3
2

(•)� • −τ3

⎞⎟⎟⎟⎟⎟⎠ < 0, (11)

which is an LMI with respect to (L, τ1, τ2, τ3).

Now we demonstrate that the feasibility of the LMI (11) is determined based on the generalized
Kalman–Szegö–Popov lemma [10].
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Lemma 1. The LMI (11) is equivalent to the LMI⎛⎜⎜⎜⎝ A�LA− L A�LB̂ +
Ĉτ

2

B̂�LA+
τĈ�

2
B̂�LB̂ − Γ

⎞⎟⎟⎟⎠ < 0, (12)

where

B̂ =
(
B̂1 B̂2

)
=
(
b1 b2 − b1

)
, Ĉ =

(
Ĉ1 Ĉ2

)
=

(
c1 c2 − τ̂1

τ̂2
c1

)
,

T =

(
τ̂1 0
0 τ̂2

)
, Γ =

⎛⎜⎝τ̂1 −τ̂1 + τ̂2 − τ̂3
2

• τ̂3

⎞⎟⎠ .

The proof of Lemma 1 is given in the Appendix.

Necessary and sufficient conditions for the feasibility of the LMI (12) are determined in the form
of a frequency-domain inequality from the generalized Kalman–Szegö–Popov lemma [9, 10]. As a
result, we arrive at the following quadratic stability criterion for system (1).

Theorem 2. Let the matrix A be Schur (r(A) < 1), and let there exist numbers τ̂s > 0, s = 1, 3,
such that Γ > 0 and the frequency-domain inequality

D(λ) = Γ +Re [T Ĉ�(A− λEn)
−1B̂] > 0 (13)

holds for all λ ∈ C, |λ| = 1, where En is an identity matrix of dimensions (n×n). (In this inequal-

ity, ReW = (W +W ∗)/2, W ∗ = W
�

is the Hermitian conjugate to W ; from this point onwards,

the symbol { · } means complex conjugation and the inequality sign is interpreted as the positive
definiteness of an appropriate Hermitian form.) Then the connected system (1) has a CQLF (sys-
tem (5) is feasible, and system (1) is stable). If system (5) feasible, then such a set of numbers
τ̂s > 0, s = 1, 3, exists.

Let us write the frequency-domain condition (13) in detail. It seems logical to treat W (p) =

C�(A− pEn)
−1B, p ∈ C, as an analog of the transfer matrix for system (1), where C =

(
c1 c2

)
and B =

(
b1 b2

)
. With the notation Δ(p) = (A− pEn)

−1, we have

W (p) = C�Δ(p)B =

(
w11 w12

w21 w22

)
, where wij(p) = c�i Δ(p)bj. (14)

For the sake of simplicity, we eliminate the hats, using τs instead of τ̂s. From (13) it follows that

D(λ) = Γ + Re T Ŵ (λ) = Γ + 1/2
[
T Ŵ (λ) + Ŵ ∗(λ)T �

]
,

where

Ŵ (λ) = Ĉ�Δ(λ)B̂

(
c1 c2 − τ1

τ2
c1

)�
Δ(λ)

(
b1 b2 − b1

)

=

⎛⎜⎜⎝
w11(λ) w12(λ)− w11(λ)

w21(λ)− τ1
τ2
w11(λ) w22(λ)− τ1

τ2
w12(λ)− w21(λ) +

τ1
τ2
w11(λ)

⎞⎟⎟⎠ .
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Finally, we write the inequality D(λ) > 0 from (13) as

D(λ) = Γ +
1

2

⎛⎝2τ1Re w11 τ1w12 + τ2w21 − 2τ1Re w11

(•) 2τ1Re (w11 − w12) + 2τ2Re (w22 − w21)

⎞⎠ > 0. (15)

(For the sake of brevity, wij is taken instead of wij(λ).)

Remark 1. Theorem 2 remains valid when replacing inequality (13) with inequality (15), where
wij = wij(λ)= c�i Δ(λ)bj , i, j = 1, 2.

If system (1) is a triangular switched system [3], i.e., c1 = c2 � c, then w11 = w21 � W1 =
c�Δ(λ)b1 and w22 = w12 �W2 = c�Δ(λ)b2. In this case, inequality (15) can be written as

D(λ) =

⎛⎜⎝τ1(1 + ReW1)
−τ1 + τ2 − τ3 + τ1W2 + τ2W1

2
− τ1ReW1

(•) τ3 + (τ2 − τ1) (ReW2 − ReW1)

⎞⎟⎠ > 0. (16)

Remark 2. For the triangular system (1) (c1 = c2 = c), Theorem 2 remains valid when replacing
inequality (13) with inequality (16), where Wj =Wj(λ) = c�Δ(λ)bj , j = 1, 2.

Compare conditions (15) and (16) of the criterion in Theorem 2 for connected switched systems
and triangular switched systems with those of Theorem 2 from [3] and their modification for
triangular systems (formulas (6.3)–(6.5) from [3]). Significant progress is evident.

Remark 3. Inequalities (13), (15), and (16) are linear in the parameter T ; therefore, without
losing generality, let τ3 = 1 in these inequalities. Thus, the inequalities under consideration will
contain only two additional parameters each: τ1 > 0 and τ2 > 0.

The well-known Tsypkin’s criterion [8] is a quadratic stability criterion under switching between
two subsystems. The criterion of Theorem 2 can be considered an analog of Tsypkin’s criterion
under switching between three subsystems.

4. NUMERICAL SOLUTION

The quadratic stability problem for system (1) is numerically solved by applying standard soft-
ware tools for checking the feasibility of the system of LMIs (5) of dimension 3n with respect to
n(n+1)/2 unknowns. Due to Lemma 1, it is possible to check the feasibility of the single LMI (12)
of dimension (n + 2) with respect to n(n + 1)/2 + 3 unknowns instead of the system of LMIs (5).
This transition allows significantly simplifying the problem, especially for large n.

5. AN EXAMPLE

Consider a connected switched system of the form (1) from the example presented in [3]. In this
example, the matrices As in (1) are given by (4) with

A1 = A =

⎛⎜⎝ 0 0 −0.5
0.5 0 −1.5
0 0.5 −1.5

⎞⎟⎠, b1 = k1

⎛⎜⎝0
0
1

⎞⎟⎠, b2 = k2

⎛⎜⎝0
1
0

⎞⎟⎠,
c1 = c2 = c =

⎛⎜⎝0
0
1

⎞⎟⎠,
(17)
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where ki � 0 are the parameters determining the stability domain of the switched system. Then
the matrices A2 and A3 take the form

A2 =

⎛⎜⎝ 0 0 −0.5
0.5 0 −1.5
0 0.5 −1.5 + k1

⎞⎟⎠, A3 =

⎛⎜⎝ 0 0 −0.5
0.5 0 −1.5 + k2
0 0.5 −1.5

⎞⎟⎠. (18)

In the sequel, system (1) with the matrices As (17), (18) will be referred to as system (1;17).

Re-examining the example from [3] can be explained as follows. In the example from [3], given
k1 = k2 = k, the entire quadratic stability domain on the parameter k was found. This result was
obtained using the necessary (separately) and sufficient (separately) conditions for the feasibility
of the system of LMIs (5). As it turned out, the estimates under these conditions coincide; hence,
the resulting quadratic stability domain is entire. Note that the conditions from [3] essentially rest
on the triangular property of the system, i.e., c1 = c2 = c.

This section aims to repeat the result from [3] based on the criterion of Theorem 2. Although
the considerations below use a variant of Theorem 2 from Remark 2, this theorem does not include
the triangularity requirement.

The presentation here involves the auxiliary calculations from [3]. Obviously, the matrix A1

is Schur, |μi(A1)| < 1, since μi(A1) = −0.5, i = 1, 3. The matrix A2 is Schur for k1 ∈ [0, 3.375),
whereas the matrix A3 is Schur for k2 ∈ [0, 0.25).

The functions Wj(λ) = c�(A− λEn)
−1bj from (16) have the form

W1(λ) = −8k1λ
2/(2λ+ 1)3 and W2(λ) = −4k2λ/(2λ + 1)3,

det (A− λE) = −(0.5 + λ)3. Inequality (16) should be checked for all λ ∈ C such that |λ| = 1. For
the set |λ| = 1, we use the parameterization λ = 1−iω

1+iω for all ω ∈ [−∞,∞]. Let us calculate W1(λ)

andW2(λ) for λ = 1−iω
1+iω .We write the real and imaginary parts ofWj

(
1−iω
1+iω

)
, simultaneously adopt-

ing the simplified notations ReWj

(
1−iω
1+iω

)
= Rj(ω) = Rj and ImWj

(
1−iω
1+iω

)
= Ij(ω) = Ij (see [3]):

R1 = R1(ω) = ReW1

(
1− iω

1 + iω

)
=

−8k1(1 + ω2)(27 + 18ω2 − ω4)

(9 + ω2)3
,

I1 = I1(ω) = ImW1

(
1− iω

1 + iω

)
=

−64k1ω
3(1 + ω2)

(9 + ω2)3
,

R2 = R2(ω) = ReW2

(
1− iω

1 + iω

)
=

−4k2(1 + ω2)(27 − 36ω2 + ω4)

(9 + ω2)3
,

I2 = I2(ω) = ImW2

(
1− iω

1 + iω

)
=

−4k2(1 + ω2)(54ω − 10ω3)

(9 + ω2)3
.

(19)

In terms of (19), inequality (16) takes the form

D(ω) =

⎛⎜⎝τ1(1 +R1)
−τ1 + τ2 − τ3 + τ1R2 + τ2R1 − 2τ1R1

2
+ i

τ1I2 − τ2I1
2

(•) τ3 + (τ2 − τ1) (R2 −R1)

⎞⎟⎠ > 0.

Letting k2 = k1 = k, we make the change ω2 = y � 0. It is required to find the largest domain [0, k∗)
for which there exists a set of parameters τi > 0, j = 1, 2, 3, such that D(ω) ∼= D(y) > 0 for
k ∈ [0, k∗) and all y � 0. Checking the inequality D(y) > 0 reduces to checking the inequalities

(A) D11 = τ1(1 +R1) > 0, (B) D22 = τ3 + (τ2 − τ1)(R2 −R1) > 0, (C) detD(y) > 0,
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where Dij = Dij(y), i, j = 1, 2, are the elements of the matrix D(y). (In fact, it suffices to check
(A) and (C).) Inequality (A) is equivalent to

P1(y) = (9 + y)3D11(y) = τ1(1 +R1)

= τ1(9 + y)3 − 8τ1k(1 + y)(27 + 18y − y2)

= τ1(1 + 8k)y3 + τ1(27 − 136k)y2 + τ1(243 − 360k)y + τ127(27 − 8k) > 0.

The check of inequality (A) coincides with that of inequalities (7.4) and (7.5) from [3]. As was
shown in [3], for k < 0.44, the inequality P1(y) > 0 holds for all y � 0.

In view of Remark 3, we assume that τ3 = 1 and, for brevity, τ2 − τ1 � δ. Then checking
inequality (B) reduces to checking the inequality

P2(y) = (9 + y)3D22(y) = (9 + y)3 + 4kδ(1 + y)(27 + 72y − 3y2)

= (1− 12kδ)y3 + (27 + 276kδ)y2 + (243 + 396kδ)y + 729 + 108kδ > 0.

Consider inequality (C):

detD = D11D22 −D12D12 = D11D22 − (ReD12)
2 − (ImD12)

2 > 0.

With the notations P3(y) � 2(9 + y)3 ReD12 and P4(y) � 2(9 + y)3 ImD12, we have

P3(y) = 2(9 + y)3ReD12(y) = 2
(
τ1(R2 −R1) + δR1 + δ − 1

)
(9 + y)3,

P4(y) = 2(9 + y)3 ImD12(y) = 2
(
τ1I2 − τ2I1

)
(9 + y)3.

Using the expressions from (19) gives

P3(y) = y3[4k(2δ − 3τ1) + δ − 1] + y2[27(δ − 1) + 4k(69τ1 − 34δ)]

+ y[9(27(δ − 1)− 40kδ + 44kτ1)] + [27(27(δ − 1)− 4k(2δ − τ1))],

P4(y) = 4kτ1
√
y(1 + y)(10y − 54) + 64kτ2y

√
y(1 + y)

= 4k
√
y(1 + y)

(
τ1(10y − 54) + 16τ2y

)
.

Inequality (C) is equivalent to

P (y) � (9 + y)6detD(y) = P1(y)P2(y)− 1

4
P3(y)

2 − 1

4
P4(y)

2 > 0. (20)

The polynomial P (y) is of degree 6 in the variable y. Its coefficients fs = fs(k) for y
s are functions

of k that depend on the additional parameters τ1 and τ2. The coefficient f6(k) of this polynomial
at y6 is

f6(k) = τ1(1 + 8k)(1 − 12kδ) − (1/4)[4k(2δ − 3τ1) + δ − 1]2.

The condition f6(k) � 0 is necessary for fulfilling P (y) > 0 for all y � 0. The function f6(k) repre-
sents a polynomial of degree 2 in the variable k. Its coefficient at k2 is a6 = −96τ1δ − 4(2δ − 3τ1)

2 =
−4(2τ2 + τ1)

2, i.e., a6 < 0 since τj > 0. It follows that f6(k) is a concave function. The desired do-
main [0, k∗) can be estimated from above by the half-interval [0, 0.25) (the Schur domain of the
matrix A3). We check the values f6(0) and f6(0.25) :

f6(0) = τ1 − (1/4)
(
δ − 1

)2
,

f6(0.25) = τ1(1 + 2)(1 − 3δ)− (1/4)
(
(2δ − 3τ1) + δ − 1

)2
.
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The condition f6(0) > 0 gives the parameter estimate 4τ1 >
(
δ − 1

)2
. Let us transform the expres-

sion for f6(0.25) :

f6(0.25) = 3τ1(1−3δ)− 1

4

(
3δ−3τ1−1

)2
=−1

4

(
3δ+3τ1−1

)2
=−1

4

(
3τ2−1

)2
.

As a result, f6(0.25) < 0 for all parameter values except for τ2 = 1/3. Thus, letting τ2 = 1/3 is the
single possibility to obtain the largest domain [0, k∗) in which f6(0.25) > 0. If we take τ2 = 1/3 and
define τ1 so that f6(0) > 0, the concavity of f6(k) will imply f6(k) > 0 for all k ∈ [0, 0.25). Partly
by chance, partly to obtain δ = 0, we set τ1 = τ2 = 1/3. In this case, f6(0) = 1/12 > 0.

As it turns out, for τ1 = τ2 = 1/3, the other coefficients fs(k), s = 0, . . . , 5, of the polynomial

P (y) =
6∑

s=0
fs(k)y

s from (20) are concave functions in the variable k. In addition, the inequalities

fs(0) > 0 and fs(0.25) > 0, s = 0, . . . , 5, hold for the values of these functions at the limit points
of the half-interval [0, 0.25). The tedious verification of this fact by elementary algebra techniques
is omitted here. Thus, we have fs(k) > 0 for all k ∈ [0, 0.25), s = 0, . . . , 6. Hence, inequality (20)
is valid for all y � 0. According to Theorem 2, the quadratic stability domain of system (1;17)
is exhausted by the set [0, 0.25). Due to its coincidence with the Schur domain of the matrices
{A1, A2, A3} defining system (1;17) (on the parameter k1 = k2 = k), this domain is the entire
stability domain of system (1;17) under arbitrary switching.

6. CONCLUSIONS

A connected system with switching between three linear discrete-time subsystems has been
considered. An existence criterion for a QLF of such systems has been established, both as a
frequency-domain condition and as feasibility conditions of a single LMI. As an illustrative example,
the frequency-domain criterion has been applied to a third-order system, analytically yielding its
entire quadratic stability domain on the parameter k. In the case under study, this domain coincides
with the entire stability domain of system (1;17) under arbitrary switching.

APPENDIX

Proof of Lemma 1. We define the new parameters

τ̂1 � δ11 + τ1, τ̂2 � δ22 + τ2.

Then

p1(L) +
τ1
2
c1 = A�Lb1 +

δ11
2
c1 +

τ1
2
c1 = A�LB̂1 +

τ̂1
2
Ĉ1,

p2(L)− p1(L) +
τ2
2
c2 − τ1

2
c1

= A�Lb2 −A�Lb1 +
δ22 + τ2

2
c2 − δ11 + τ1

2
c1

= A�L(b2 − b1) +
τ̂2
2
c2 − τ̂1

2
c1 = A�LB̂2 +

τ̂2
2
Ĉ2.

(A.1)

It suffices to represent the matrix

⎛⎜⎝−τ1 τ1−τ2+τ3
2

• −τ3

⎞⎟⎠ in the form
(
B̂�LB̂ − Γ

)
.
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Considering b�1 Lb2 � δ12 and b�2 Lb1 � δ21, we write the matrix B̂�LB̂ as

B̂�LB̂ =

(
b�1

b�2 − b�1

)
L
(
b1 b2 − b1

)
=

(
b�1 L

b�2 L− b�1 L

)(
b1 b2 − b1

)
=

(
δ11 δ12 − δ11

δ21 − δ11 δ22 − 2δ12 + δ11

)
.

(A.2)

Thus, it is required to find the elements of the matrix Γ = ‖γij‖ni,j=1 so that⎛⎜⎝−τ1 τ1 − τ2 + τ3
2

• −τ3

⎞⎟⎠ =

(
δ11 − γ11 δ12 − δ11 − γ12

δ21 − δ11 − γ21 δ22 − 2δ12 + δ11 − γ22

)
. (A.3)

Since −τ1 = δ11 − τ̂1, the equality of the elements {·}11 of the matrices from (A.3) gives γ11 = τ̂1.
In view of −τ2 = δ22 − τ̂2, the equality of the elements {·}12 leads to

τ1 − τ2 + τ3
2

=
−δ11 + τ̂1 + δ22 − τ̂2 + τ3

2
= δ12 − δ11 − γ12.

Consequently,
δ11 + δ22 + τ̂1 − τ̂2 + τ3 = 2δ12 − 2γ12.

By the equality of the elements {·}22, we have

−τ3 = δ22 − 2δ12 + δ11 − γ22.

Summing the last two equalities yields

τ̂1 − τ̂2 = −2γ12 − γ22.

Letting γ22 = τ̂3, we obtain
γ12 = (−τ̂1 + τ̂2 − τ̂3)/2.

Thus, ⎛⎜⎝−τ1 τ1 − τ2 + τ3
2

• −τ3

⎞⎟⎠ =
(
B̂�LB̂ − Γ

)
,

where

Γ =

⎛⎜⎝τ̂1 −τ̂1 + τ̂2 − τ̂3
2

• τ̂3

⎞⎟⎠ .

The proof of Lemma 1 is complete.
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